文本到图像综合的目标是生成与给定文本描述匹配的视觉现实图像。在实践中,人类注释的标题在同一图像中具有很大的内容方差和单词的选择。相同图像的标题之间的语言差异导致偏离地面真理的合成图像。为了解决这个问题,我们提出了一种对比的学习方法来提高质量,增强合成图像的语义一致性。在预先预测阶段,我们利用对比的学习方法来学习对应于相同图像的标题的一致文本表示。此外,在GaN训练的以下阶段,我们采用对比学习方法来增强来自与相同图像相关的标题的所生成的图像之间的一致性。我们分别评估了我们在数据集幼崽和Coco上的两个流行文本到图像综合模型,ATTNGAN和DM-GAN的方法。实验结果表明,我们的方法可以有效地提高三个度量的合成图像的质量:是,FID和R精度。特别是,在挑战的Coco DataSet上,我们的方法将FID显着地通过29.60%的Attngan来增强29.60%,并在DM-GaN中达到21.96%。
translated by 谷歌翻译
Neuroimaging-based prediction methods for intelligence and cognitive abilities have seen a rapid development in literature. Among different neuroimaging modalities, prediction based on functional connectivity (FC) has shown great promise. Most literature has focused on prediction using static FC, but there are limited investigations on the merits of such analysis compared to prediction based on dynamic FC or region level functional magnetic resonance imaging (fMRI) times series that encode temporal variability. To account for the temporal dynamics in fMRI data, we propose a deep neural network involving bi-directional long short-term memory (bi-LSTM) approach that also incorporates feature selection mechanism. The proposed pipeline is implemented via an efficient GPU computation framework and applied to predict intelligence scores based on region level fMRI time series as well as dynamic FC. We compare the prediction performance for different intelligence measures based on static FC, dynamic FC, and region level time series acquired from the Adolescent Brain Cognitive Development (ABCD) study involving close to 7000 individuals. Our detailed analysis illustrates that static FC consistently has inferior prediction performance compared to region level time series or dynamic FC for unimodal rest and task fMRI experiments, and in almost all cases using a combination of task and rest features. In addition, the proposed bi-LSTM pipeline based on region level time series identifies several shared and differential important brain regions across task and rest fMRI experiments that drive intelligence prediction. A test-retest analysis of the selected features shows strong reliability across cross-validation folds. Given the large sample size from ABCD study, our results provide strong evidence that superior prediction of intelligence can be achieved by accounting for temporal variations in fMRI.
translated by 谷歌翻译